

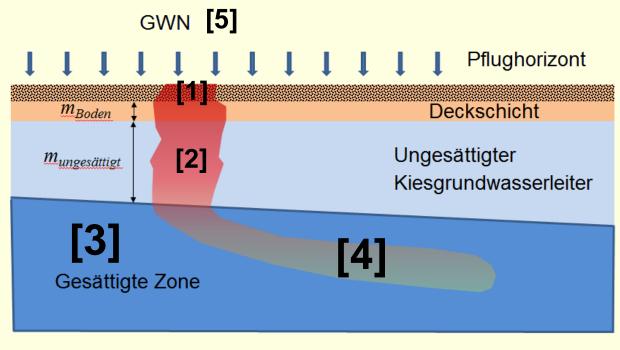

PFC-Problematik im Raum Baden-Baden/ Rastatt

- Grundwassermodell -

THOMAS GUDERA, REFERAT 42- GRUNDWASSER

Ulrich Lang und Armin Durach Ingenieurgesellschaft Prof. Kobus und Partner GmbH

Modellbegriff: DIN 4049 Teil 1 Nr. 2.18 ff.


- Modell: Schematische Nachbildung eines Systems bezüglich ausgewählter Eigenschaften und Vorgänge
- Mathematisches Modell: Modell, bei dem die ausgewählten Eigenschaften und Vorgänge mit Hilfe mathematischer Gleichungssysteme beschrieben werden
- <u>Physikalisches Modell:</u> Modell, bei dem die ausgewählten Eigenschaften und Vorgänge mit Hilfe eines analogen physikalischen Systems beschrieben werden
- Modellkalibrierung: Anpassen eines Modells an die Gegebenheiten des betrachteten Systems (z.B. Meßwerte) für bestimmte Zeitspannen oder einen bestimmten Zeitpunkt
- Modellverifizierung: Überprüfen eines kalibrierten Modells durch Vergleich von berechneten Werten mit Meßwerten
- Simulation: Einsatz eines Modells zur Beschreibung des Verhaltens des betrachteten Systems unter bestimmten Gegebenheiten

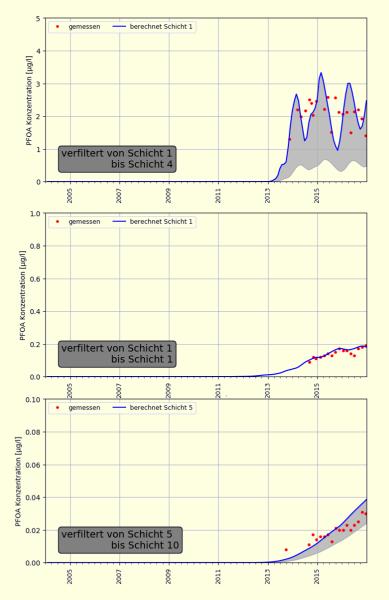
PFC-Modellsystem Mittelbaden

- Nulldimensionales Austragsmodell für Pflughorizont [1]
- Eindimensionales Modell ungesättigte Zone (Strömung und Transport) [2]
- GW-Strömungsmodell für gesättigte Zone [3]
- GW-Transportmodell gesättigte Zone (5 PFC-Spezies) [4]

- Bodenwasserhaushalts modell (GwN) [5]
- Wasserhaushaltsmodell
 (LARSIM
 Oberrheinzuflüsse) [6]

Kalibrierergebnis – PFC-Ganglinien

Oberflächennahes Grundwasser in der Nähe von belasteten Flächen:

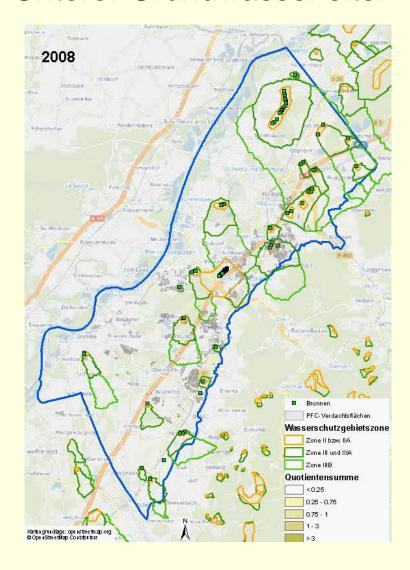

- Hohe PFC-Konzentration
- Saisonale Dynamik

Oberflächennahes Grundwasser im Abstrom von belasteten Flächen:

 geringere PFC-Konzentrationen durch Verdünnung

Tiefes Grundwasser:

- Derzeit deutlich geringere PFC-Konzentrationen als oberflächennah
- Weiterer Anstieg der PFC-Konzentration zu erwarten

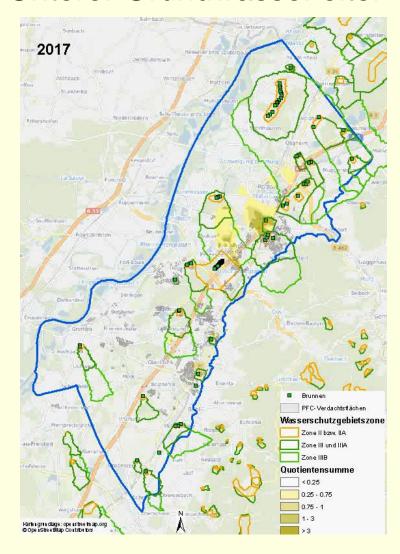


PFC-Verteilung – simuliert bis 2016

Oberer Grundwasserleiter

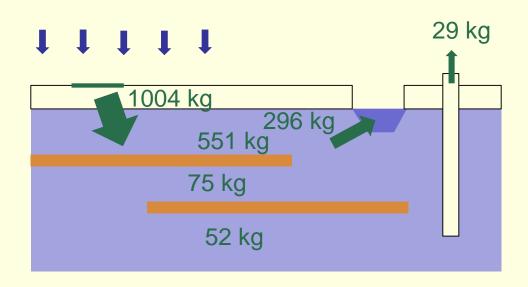
2008 PFC-Verdachtsflächen Wasserschutzgebietszone Zone II bzw. IIA Quotientensumme 0.75 - 1 Kartengrundtage: openstreefmap.org OpenStreefMap Contributors

Unterer Grundwasserleiter



PFC-Verteilung – simuliert 2017 bis 2025

Oberer Grundwasserleiter


2017 PFC-Verdachtsflächen Wasserschutzgebietszone Zone II bzw. IIA Zone III und IIIA Zone IIIB Quotientensumme < 0.25 0.25 - 0.75 Karten grandtage: openstree trap.org © OpenStreetMap Contributors

Unterer Grundwasserleiter

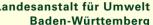
PFC-Massenbilanz 2016

Spezies	Eintrag	Austrag Oberflächen- gewässer	Austrag Entnahmen	im Aquifer
PFBA	57	17	2	36
PFPeA	317	102	10	205
PFHxA	375	125	11	239
PFHpA	67	22	3	42
PFOA	188	30	3	155
Σ	1004	296	29	677

PFC-Massenbilanz – 2016 bis 2026

Entwicklung PFC-Gesamtmassen bis 2026:

- Abnehmend im oberen Grundwasserleiter
- Zunehmend im mittleren und unteren Grundwasserleiter


Spezies	OGWL	MGWL	UGWL	Σ	
Σ	551	75	52	678	2016
PFBA	9	4	6		
PFPeA	49	24	34		
PFHxA	54	26	32		2026
PFHpA	12	5	7		2020
PFOA	78	22	18		
Σ	202	81	97	380	

Zusammenfassung

- ... bildet die Grundwasserströmung und den PFC-Transport im Grundwasser zutreffend ab
- ... ist ein wichtiges Werkzeug zur Analyse des Systems
- ... wird laufend verbessert und auf der Grundlage neuer Informationen und Erkenntnisse aktualisiert
- Die Entwicklung von PFC-Fahnen im Vorfeld der Entnahmebrunnen der WVU kann prognostiziert werden
- Die PFC-Belastung im oberen Grundwasserleiter nimmt durch den Austrag in Oberflächengewässer ab
- Die PFC werden sich künftig aus den oberen Bereichen des Grundwassers in tiefere Bereiche verlagern

Vielen Dank für Ihre Aufmerksamkeit!

Bericht und FAQs finden Sie im Bestellshop der LUBW unter Grundwasser http://www4.lubw.baden-wuerttemberg.de/servlet/is/272881/

Der Bericht erscheint automatisch noch bei den Neuerscheinungen http://www4.lubw.baden-wuerttemberg.de/servlet/is/15601/

